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Oscillatory relativistic motion of a particle in a power-law or sinusoidal-shaped potential well
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We report on an analytical work about the one-dimensional undamped relativistic motion of a particle
located in a potential well whose space dependence is given by a power law or a sinusoidal law. This
analysis is of interest in the present-day research field on interaction of ultra-high-intensity laser pulses
with plasmas. First, we consider the oscillating motion of a particle trapped inside a potential-energy
profile of the form K|x|" where K is a constant, x is the space coordinate, and n is a positive real number.
The cases n =1 and n =2 are emphasized since the former is related to the motion of electrons that exit
an homogeneous electrically neutral plasma towards vacuum and the latter is related to the usual elec-
tron plasma oscillation. Second, we study the potential-energy profile cos(x) in connection with the ac-
celeration of an electron inside an electron plasma wave. Both trapped and untrapped particle motions
are considered. For all the potential-energy shapes, analytic expressions of both the period of the oscil-
lating motion and the particle trajectory are provided. The particle motion in the weakly relativistic
case is discussed. The acceleration length of a particle trapped inside a sinusoidal drifting wave is finally
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calculated.

PACS number(s): 52.40.Nk, 52.20.Dq, 52.60.+h, 03.30.+p

I. INTRODUCTION

Recently, the plasma physics involved in the interac-
tion of a high-intensity laser beam with matter crossed
the frontier which separates the classical plasmas from
the so-called relativistic plasmas. In contrast to the usual
terminology used in astrophysics, the term “relativistic”
here means the high velocity, close to the light velocity ¢
in vacuum, that the electrons of the medium irradiated
by a focused laser beam may reach. This velocity is not
isotropic but, a priori, in a plane normal to the propaga-
tion direction of the laser light and containing the
incident-wave electric field. Recent compact lasers can
produce 1-TW beams at (sub-) micrometer wavelengths
which, after focusing, provide irradiance exceeding [1]
10'®* W/cm?, and make electrons in the focal volume os-
cillate with relativistic velocities. Indeed, the electron
momentum, normalized to m,c, can be written as

ay=0.85V/1,A2/10', where m, denotes the electron
mass, A, is the laser wavelength in pm, and I, is the laser
irradiance in W/cm? In addition to this transverse
motion, another motion takes place along the propaga-
tion direction via the so-called ponderomotive force pro-
duced by the time-averaged laser energy gradient. As the
ion mass makes the ions quasi-immobile, a restoring force
tends to act on the mobile electrons, inducing an oscillat-
ing behavior. The electrons may then have a collective
longitudinal motion with relativistic velocities, which
gives rise to a very-high-amplitude electron plasma wave,
an example of which can be found in the so-called wake-
field effect [2].

It is easy to show that the longitudinal electron motion
can be explained by the potential-energy profiles |x| or
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x2, where x denotes the space coordinate of the motion.
Indeed, let us consider a semi-infinite homogeneous plas-
ma with a vacuum/plasma interface at x =0. If, at equi-
librium, the plasma is assumed to be constituted by im-
mobile electrons and ions ensuring charge neutrality, the
electron and ion density is given by n, =n,Y (x), where Y
denotes the Heaviside function defined by Y(x <0)=0
and Y(x Z20)=1. We now analyze the evolution of the
displacement of an electron slab around its equilibrium
position x,,. If the ions are assumed to remain immobile,
Poisson’s law gives the following electric field:

%g=£%[noY(x)—n(x)], (1)
where E (x) and n(x) are the electric field and the elec-
tron density at location x, respectively; —e is the electron
charge; and ¢, is the dielectric constant of vacuum. If no
electron orbit crossing is assumed, the total negative
charge located on each side of the electron location x is
the same as for x,; only the ion positive charge is
modified by the electron motion. As a result, Eq. (1)
leads to the electric field E(x)=nge/go[xY (x)—x,].
We then obtain the potential energy of the electron
as a function of its displacement: —ed(x =0)
=m0k, (x —x,0)?/2 and —ed(x <0)=m,wlx,o(x
+x,0/2), where ¢ is the electric potential and ), is the

electron plasma frequency V/ nge?/m,e,. Therefore, de-
pending on the electron position, a linear- or quadratic-
shaped potential energy can drive the electron motion.
Because the potential energy increases with |x|, without
any limit, the electron is always trapped inside the poten-
tial well, regardless of its initial position or energy, result-
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ing in a periodic motion. It should be noted that both
these potential-energy expressions refer to a homogene-
ous density plasma or vacuum. Potential-energy expres-
sions K|x|" with n >3 correspond to situations where the
plasma density is inhomogeneous with a profile sym-
metric at x =0.

Let us consider the specific sinusoidal potential. It
refers to the motion of an electron which does not con-
tribute to the collective effect; instead the electron feels
the potential of an electron plasma wave induced by the
harmonic motion of the plasma electrons oscillating in
the above-mentioned quadratic potential. The sinusoidal
potential is readily obtained when the electron motion in
the collective effect is classical, i.e., with velocity v <<c.
As the potential energy oscillates between two finite lim-
its, two kinds of particles may appear: the trapped parti-
cles, which remain inside one of the wells of the periodic
pattern, and the untrapped particles, which may migrate
over the whole pattern; the latter are high-energy parti-
cles in the wave frame. The trapped particle motion
models the acceleration of an electron inside an electron
plasma wave and is connected with the new concepts of
plasma-based accelerators that use wake-field [2] and
beat-wave [3-5] effects. The theoretical aspects of both
of these effects have been covered at length [2,3]. Experi-
mental evidence of large electric fields of a few GV/m
have been obtained for beat wave only [4]. As to electron
acceleration, only one experiment has so far demonstrat-
ed the acceleration of injected 2-MeV electrons to ener-
gies up to 9 MeV [5].

Whereas transverse and longitudinal motions along or-
thogonal directions are decoupled in the classical regime,
they become coupled through the Lorentz factor in the
particle momentum when velocities become relativistic.
If the incident laser wave is assumed to be a plane wave
with circular polarization, the transverse momentum p,
is constant and equal to |gA|, where A denotes the
wave-potential modulus and ¢ is the particle charge. If
v, denotes the velocity component of the particle in the
transverse plane normal to the x axis, and v the particle
velocity along the x axis, the Lorentz factor defined by

y=1/V"1—(

v2+v?)/c? can also be written

Y1
_—— (2)
[V sy

where v, is the transverse factor \/H—(pl /mc)?, and m
is the particle mass. Since y, is constant for a circularly
polarized wave, the transverse motion modifies the parti-
cle motion only along the x axis by increasing the elec-
tron mass by the factor y |, which enables us to isolate the
particle motion along the x axis.

The undamped particle motion is described by the con-
servation of the Hamiltonian H, composed of the kinetic
and potential energies:

2

myc
———+E (x). (3)
V1—v?/c? X

Without any loss of generality, we assume henceforth
that the particle is initially located at the point that mini-

H(x,v)=

mizes the potential energy; this location is defined as
x =0, and we choose E,(0)=0. If <I>(x) denotes the nor-
malized potentlal energy E,(x)/my ¢, and if we define
Yxo=1/ V1 —v3/c? as the 1n1t1a1 “longitudinal” Lorentz
factor, Eq. (3) becomes

1
V1—v?/c?

The basin shape of the potential energy around x =0
leads to the force —d®/dx with opposite sign with
respect to x; this force tends to bring the particle toward
the equilibrium position (x,v)=(0,0), and then induces a
periodic motion. The maximum particle momentum
along the x axis is

+d=y,. @)

pmax/mylc=\/y§0—1 . (5)

Within a relativistic mechanics framework, previous
analytical works [6,7] dealt with the quadratic potential
energy only. In this paper, we first consider a more gen-
eral algebraic expression for the potential energy, namely
a power-law function of space, and, second, we examine a
sinusoidal potential energy which is the most basic shape
for any spatially periodic potential. Since the particle lo-
cation and momentum can be expressed as functions of
the potential energy @, a full understanding of the parti-
cle trajectory will depend on the ability to obtain some
expression of the time as a function of the same parame-
ter ®@. It should be noted that the results we obtained de-
scribe both single-particle motion and charged fluid slab
motion. The latter is considered within a Lagrangian
description in the context of no slab crossing, which en-
ables us to model the charge behavior by a single-fluid
model.

The paper is organized as follows. In Sec. II, the
potential-energy profile K|x|" is considered, where K is a
constant and n is a positive real number. In Sec. ITA, we
calculate the oscillation period in the general relativistic
case and then give the expression for the weakly relativis-
tic case. In Sec. II B, we specifically study the motion
period for the cases n =1 and 2. In Sec. II C, the trajec-
tory of the particle is given for both cases n =1 and 2.
Section III is devoted to the sinusoidal potential energy.
Section III A is concerned with the oscillation period;
Sec. III B deals with the particle trajectory; and Sec. III C
discusses the acceleration length of a particle in a fast-
moving potential well. Conclusions are given in Sec. IV.

II. MOTION IN A POTENTIAL WELL
|n|» WITH n >0

The type of unbounded potential energy that we exam-
ine here leads to a finite range of particle excursion. The
particle is trapped between the locations —x,, and x,,,
where the potential energy is at maximum: ®,, =y ,—1.
The time can be expressed as a function of x or & by
writing ¢t = f odx'/v. The tractability of our calculation
is based on the use of the potential energy ® as a new
variable. The relation ®=K]|x|"/my c? leads, after
some algebra, to the expression of time as a function of
the potential energy:
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where the term on the right-hand side of the above ex-
pression has units of time. This integral needs to be
rewritten in order to find some reference functions. For
this purpose, we define y=®/®,,, so that ¢ ranges from
0 to 1, and we define z>=®,, /(2+®,,), so that the ex-
pression for time becomes

t(y)= —— V24, 1,(4)

o
N
S

3

——J, |, (7)
V2+o, ¢]

with

_1 v amnV1=2%
La=—["¢ Ty 4

and

1

Vi vVi—y
The constant which appears in front of the brackets in
Eq. (7) is related to both the potential-energy shape and
the particle excursion; the latter dependence disappears
for the specific case n =2. _

Now, by defining n=1v'/¢ and u =V'(0<u <1), we
can write the above integrals as hypergeometric functions
222, according to

1y am-n p
J, () nfo¢ dy' .

of two variables, namely u? and u?z
Gradhshteyn and Ryzhik’s notation [8]:

11 1
I(u?)=u?"F, ;,E,—E;H-—;uz,zzuz, , 8
J,(ut)y=u"F, 1,%,-#—%;1-*— sutz?u? |, 9

where the function ;F, is given by

sFi1(A,p,v;o5p%q%)

SN SN b VP VA DS gt
B(k,a—k)fon (1=m
X(1—=p*n)"M1—gq%*y)"%dn . (10)
B denotes the beta function:

B(}»,,u)=foln"‘l(l—n)“”ldn= l;“((];\)i(y)) , an

where T is the Euler gamma function [8].

Equation (7) together with Egs. (8) and (9) give time as
a function of tabulated special functions and therefore
close the set of equations which fully describes the parti-
cle trajectory. In Sec. II A, we focus on the period of
motion and then examine in detail the trajectories for

both the linear and quadratic potential shapes. We en-
deavored to scrupulously keep the notations and the or-
der of the parameters for the special functions involved in
the calculations.

A. Period of the oscillatory motion

At x =0, the potential energy is zero, i.e., =0, and
the kinetic energy is at a maximum, whereas at x =x,,
we have ¥=1 and the kinetic energy becomes zero.
Therefore, the period for a full oscillation is simply writ-
ten as T,, =4¢(1); that, is by using Eq. (7),

T,=4 x| 1
c Vo

J,(1)

V2+e,1,(1)—
V2

m m

(12)

The expressions for 1,(1) and J, (1) in Egs. (8) and (9) can
now be expressed as

=111 1 _ 11,15,
L(==B|—— LF | =5+’ [, (1))
=1p11 111,15,
J,,(l) nB n’2 2Fl n)272 ,Z ’ (14)

where ,F; denotes the following hypergeometric function
for the single variable g 2:

(A p;0397)

_ 1
" B(Ao—A)

><foln}‘—l(l—n)”_}‘_l(l—qzn)_“dn . (15)

By using the equality F(%)=\/7T and Eq. (11), the general
expression for the period becomes

x| |
— |x
T,,=4\/7r 1_
¢ Vo, 1,1
_+_
n 2
1 11 1
X \/2+(Dm2F1 ;,—3,54’;,22
1 111,1 ,
_ - =, —+—,z (16)
‘/2+q>m2 "In’2°2 " n

Figure 1 displays the surface cT, /|x,,| as a function of
the potential exponent # and the maximum potential en-
ergy ®,,; this plot has been drawn from tabulated func-
tions obtained from software of Ref. [9]. We observe that
T, is a monotonically decreasing function of both param-
eters n and ®,,, and that for » -0 and/or ®,, -0 the
period exhibits a sharp increase. When n-—0, the
potential-energy profile is characterized by an increase
around x =0 and a plateau for larger values of x, which
become more and more localized and extended, respec-
tively. Under such conditions, the particle that is initial-
ly located at x =0 loses its initial kinetic energy over a
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FIG. 1. Potential energy K|x|": period T, as a function of
the potential exponent n and the maximum potential energy
®,,. T, is referred to |x,,| /c, where x,, denotes the particle ex-
cursion.

short distance to reach the potential-energy plateau and
then spends a long time at a slow velocity to reach the
point x,,. This explains why the period of motion is in-
creased by decreasing the potential exponent. Converse-
ly, for n — «, the potential-energy profile exhibits a pla-
teau at larger and larger values and a sharp increase by
approaching x,,. The period then can be found easily by
considering the particle velocity v to be constant during
the whole trajectory, with its value inferred from the en-
ergy conservation equality y,,=1+®,,. The period is
readily found to be T, =4|x,,|/v, which takes the form

T,=4|x,,|/c(1+®,)/V/ ®,(2+®,). In the classical
regime__defined by @, <<1, we find T,=4|x,]|/
c1/1v/®, . Conversely, in the hyper-relativistic case, i.e.,
®,, — «, the period becomes T, =4|x,, |/c, which is in-
dependent of n; this feature can be observed in Fig. 1.

We now consider the limit of a weakly relativistic
motion, by assuming that the maximum potential energy
is much lower than my c?, so that z? is small compared
to unity in the above expressions. In Eq. (7), the expan-
sion to first order in z? of the integrals I,(1) and J,(1)
leads to

2
+Z B

2

11 1 1
—, = __+1’_
n 2 n

B
2

) (17

where the signs + and — correspond to I,,(1) and J,(1),
respectively. After some algebra and by defining
A=T(/n+1)I(1/n+1)/[T(1/n+3)T(1/n)] and re-
taining the terms to first order in ®,,, we obtain the fol-
lowing expression for the period:

1
— x| n
T =2Vr l._

(1420, (1—4)].

(18)

In the so-called classical limit, i.e., ®,, —O0, the general
period becomes

r

1
n

Ixnl 1

TS=2V'r —
c \/q>m
n

(19)

1.1
n

r 2

If, in addition, we assume y,=1, we are left with the
equality

ril

Te— 2V 2mm

1/n—1/2
n Kl/n é (20

in which the second expression is exactly the classical re-
sult given in Ref. [10] if & denotes the initial kinetic ener-

gy me*(y xo— 1),

B. Oscillation period
for the potential-energy shapes |x| and x 2

In this section, we concentrate on the special cases
n =1 and 2, which are usually relevant for laser-plasma
interaction.

For the case n =1, Eqgs. (8) and (9) give a simple rela-
tion, between I, and J:

1—2z?

I(1)=2,F(1,— 1,3 z%)= Jy()+1. (21)

The resulting period for the linear potential is found to be
172

2

= +1
®

T,=4 (22)

¢ m

In the highly relativistic regime defined by ®,, >>1, the
period decreases to the limit 7} =4|x,, | /c previously dis-
cussed. For the weakly relativistic motion, i.e., ®,, <<1.
T, can be written from Eq. (22):
x|
T1=4\/2——"'—‘/%(1+%¢m) . 23)

c
m

For the classical motion limit, T'; reduces to the follow-
ing expression by using the potential strength K:

172
Im|x,, |

TS=4v2 (24)

To make a connection to a plasma, where K is written as
mewfwxeo/y 1» with x,, the electron position referred to
the plasma edge as defined in Sec. I, the period above can
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be written as w, T =4V2V/y x,, /X .
For the case N =2, after using B(1/2,1/2)=7 Egs.
(13)-(15) become:

v
—,z

m
—,z 5

LW=E|T.z|, L)=F , (25)

where F and E denote complete elliptic integrals of the
first and second kinds with argument 7 /2 and modulus z,
according to definitions in Ref. [8]. Equation (8) leads to
the following period:

o xml o

P o
T,=4 — [V2+®,E |-,
2 c Vo, 4 m& |92
—;F 1,2 ,  (26)
2+, |2

where the constant in front of the brackets does not actu-
ally depend on x,, but only on the potential strength K,
in contrast to the period T'|, and more generally with any
period T, when n#2. The above expression recovers ex-
actly the expression put forward in MacColl’s paper [7].
Figure 1 shows that, as a function of ®,,, the curve of T,
always lies below the curve for T';. For the weakly rela-
tivistic case defined by ®,, <<1, the elliptic integrals ex-
pand according to E(w7/2,z2)=w/2(1—z2/4) and
F(w/2,2)=m/2(14+22/4); the resulting period becomes,
to first order in ®,,,
— lx.l 1

=/ L 3 )
Ty=Var—rm = (1440,) @7

m

By using the potential strength K, the classical motion
limit is characterized by the following period:

5 172
T§=m |5+ 28
A (28)

J
x@®_ 1 _ 2 32_C o
v, o, |1 On) T (10, a0 Vo

Orbits x () and momentum p (¢) are displayed in Figs. 2
and 3, respectively, for various values of ®,,. The evolu-
tion of the phase diagram as a function of ®,, is shown in
Fig. 4. The period decrease with increasing ®,, can be
seen clearly. The momentum dependence with respect to
time has a triangular shape, which indicates a uniformly
accelerated motion.

In the classical regime, we can expand x and p as func-
tions of ®,, to obtain the following expressions for both
position and velocity:

172 172
x(t) — q)m [4 tla— m 4 t
(1) (32)
2 =v20, b, ——t .
c 1%, |

The position is a quadratic function of time, which is also

In a plasma, where K =mea)12,e/2h, the above period has

the usual expression TS=2mV'y /@y Also, Eq. (27)

provides the correction to the plasma frequency for

v, =1

Ope
c

_3

w2=wpe 16

2
x2 l , (29)

in agreement with the standard expression found in Ref.

[11].
C. Particle trajectory for n =1 and 2

The particle position and momentum can be obtained
as functions of time through parametric expressions in
which the normalized potential energy y=® /P, is the
parameter; the latter ranges from O to 1.

For n =1, the motion is characterized by the following
parametric equations:

Ixnl 1

t(¢)=7‘/qT V2+o,[1-V(I—y¢)1-2%)],

m

x(P)=x,,v, (30)
W) 0Fe, (-1,
my c

with |x,,|=(y,,—1)/K. The first equation is derived
from Eq. (7), the second from the definition of v, and the
last one from the conservation of the Hamiltonian in Eq.
(3). For ¥=0, we recover the initial conditions ¢ =0,
x =0, and p/mylc=\/y§0—1. The value ¥=1 gives
t=T,/4, x =x,,, and p =0; these values are related to
the extremum of the particle position. Actually, the ex-
pression ¢ (¢) can be inverted into ¥(z), such that the tra-
jectory can be obtained explicitly as a function of time:

"%

172
< t-2v2+0, ” ] . (31)

f

the usual specific feature of a uniformly accelerated clas-
sical motion. The pattern exhibited by these expressions
can be recovered from Figs. 2 and 3, for ®,, =0.1.
For n =2, the parametric expressions for time, posi-
tion, and momentum, respectively, are written
cay=ml L
c Vo

m

V2+®,E(A,z)

—————=F(\,2) |,
V2+o,

x(A)=x,,sin(A) , (33)

-LM=\/{1+<I>m[l—sin2(M]}2—l ,

my,c

where A is defined by the expression A=sin~ V3. As for
the velocity expression, we find
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FIG. 2. Potential energy K|x|: particle location x as a func-
tion of time for various maximum potential energies ®,,: (a)
0.1, (b) 0.3, (c) 1, (d) 2, and (e) 4. At ¢t =0, the particle is located
at x =0 with the Lorentz factor y,,=1+®,,. Time is referred

to |x,, | /c, where x,, denotes the particle excursion.

p/my ¢

FIG. 3. Potential energy K|x|: particle momentum p/my,c
along the x axis as a function of time for various maximum po-
tential energies ®,,: (a) 0.1, (b) 0.3, (c) 1, (d) 2, and (e) 4. At
t =0, the particle is located at x =0 with the Lorentz factor
¥x0=1+®,,. Time is referred to |x,, | /c, where x,, denotes the
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particle excursion.

p/my ¢

X/1X !

FIG. 4. Potential energy K|x|: phase space (location x re-
ferred to the particle excursion x,,, momentum p/my c) for
various maximum potential energies ®,: (a) 0.1, (b) 0.3, (c) 1,
(d) 2, and (e) 4. As a function of time, a particle follows the con-

tours in a clockwise direction.

05t [/
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FIG. 5. Potential energy Kx2: particle location as a function

of time for various maximum potential energies ®,,: (a) 0.1, (b)
0.3, (¢) 1, (d) 2, and (e) 4. At ¢ =0, the particle is located at
x =0 with the Lorentz factor y,,=1+®,,. Time is referred to
|x,.|/c, where x,, denotes the particle excursion.

p/my \C

4t
|
FIG. 6. Potential energy Kx2: particle momentum p/my,c
as a function of time for various maximum potential energies
®,,: (a)0.1,(b) 0.3, (c) 1, (d) 2, and (e) 4. At ¢ =0, the particle is
located at x =0 with the Lorentz factor y,,=1+®,,. Time is
referred to |x,, | /c, where x,, denotes the particle excursion.

XXyt

FIG. 7. Potential energy Kx2: phase space (location x re-
ferred to the particle excursion x,, momentum p/my,c), for
various maximum potential energies ®,: (a) 0.1, (b) 0.3, (c) 1,

(d) 2, and (e) 4.
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v(A) =‘/$.; \/2+<I>m cos?(A) cos(A) . (34)
c 14+ ®,, cos(A)

By defining parameter A, the time is written as a function
of the elliptic integrals, which clearly shows the motion
period. When ¥=0, which yields A=0, we get the initial
conditions t =0, x =0, and p =p,, given by Eq. (5). At
the top excursion of the potential well, when ¥=1, we
have A=w/2, so that the expressions give t=T,/4,
where T, is the complete period of the motion defined in
Eq. (26), x =x,,, and p =0. The trajectory x(¢) and
momentum p (¢) are displayed in Figs. 5 and 6, respec-
tively, for various values of ®,,; the phase diagram (x,p)
associated with the motion is displayed in Fig. 7.

In the classical regime ®,, —0, from the combination
of expressions (33) we can infer the usual expression for
the position and velocity:

x(t)=x,, cos(w,t) ,
(35)
v(t)
c

=120, sin(w,t) ,

where w,=V'2K /m . In Figs. 5-7, the classical case cor-
responds to the value ®,, =0.1.

III. MOTION IN A cos(x) POTENTIAL

The normalized potential energy is written as
®(x)=g[1—cos(kx)], where k denotes the wave vector
of the periodic pattern. With this choice, the equilibrium
point is kept at (x,v)=(0,0) as in Sec. II. A major
difference from Sec. II is that the potential energy has a
finite maximum bounded by 2e. This means that a parti-
cle can either be trapped and oscillate in the potential
well (the orbit stays in a finite extension domain) or be
untrapped and keep a constant velocity sign (the orbit ex-
plores an unlimited-extension space). The particle is lo-
cated initially at x =0, where the potential is zero, with
the “longitudinal” Lorentz factor y,, The trapping re-
gion corresponds to the Lorentz factor domain located
below the separatrix line whose equation is written

Yeo<142€ . (36)

The untrapping region is associated with the opposite
condition.

As before, we obtain the time as a function of the loca-
tion from the relation t = f odx /v, and by the energy

conservation Eq. (4) rewritten as
1

V1—(dx /cdt)?

By using the notation ®,, =y ,,—1, we obtain the follow-

ing expression of time as a function of the potential ener-
gy @:

=y.0—P . (37)

fq, 2+, — o 172
o | D'(P, —D')2e—D')
—f¢ do’
0 V(2+, — )P (P, — ' )(2e— ')
(38)

-1
t(P)= P
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A. Oscillation period

First we consider the untrapped particle regime, i.e.,
¥.0> 1+2¢. The particle moves in the whole potential
energy domain from O to 2e. We can define the period of
the motion as the time required by the particle to jump
from the initial well bottom to the next bottom; thus the
period can be written as T, =2t (2¢), where the subscript
u stands for untrapped particles. In Eq. (38), the expres-
sion under the radical sign remains positive, so that there
are no conditions on the solution. After some algebra, we
find that both integrals in Eq. (38) can be written as func-
tions of tabulated functions, so that the period T, be-
comes

1 1
“ ke y/o,(1+®, —¢)

m —E&

X [2(1+ D, |2, —————r

3Ty

(39)

where Il and F denote complete elliptic integrals of the
third and first kinds, respectively, according to notations
in Ref. [8] and where the expression of the modulus r, is

172
€

P, (1+P, —¢) (40

r,=

We now consider the trapped particle motion. As the
particle remains in a bounded domain, the period is four
times the time needed by the particle to go from its initial
position to its stopping point x,,. Clearly, as ®,, remains
lower than 2g, the expression in the square roots involved
in Eq. (38) are positive. From Ref. [8], the solution de-
pends on the relative importance of 2e and 2+®,,. Hen-
ceforward, case P will refer to the situation when the fol-
lowing inequality is fulfilled: 2e <2+, , and case Q will
refer to the opposite situation 2+®,, <2¢. It should be
noted that in the classical regime, i.e., € << 1, condition P
is always fulfilled; in the hyper-relativistic regime, defined
by € >>1, the domain P is close to the separatrix and the
trajectory is essentially inside the domain Q. From Ref.
[8] we find the following periods:

4 1 o <I)m T
Tp=—— ——— —F|—
P~ ke Ve 2+, )11 X 5 TP F L ,
41)
¢ ke v/ (2e—®, )2+, )
—&
o m
X |ell 22—, N
T
—(2e—®,, —1)F Sore || (42)
where
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2+®, —20)0, |
P 4¢

and
[ ee—2-o,0, |7
0T | 2e—o, 2+ D,)

The period is continuous, i.e., Tp=T,, at 2+, =2,
which is the boundary between domains P and Q. Actu-
ally, the expression for T, can be recovered exactly from
Eq. (41) by replacing 2 by 2e —®,,. The distinction be-
tween cases P and Q comes from the use of parameter 7,
which involves a square root; this distinction can be over-
looked in plotting by using the elliptic functions available
in Ref. [9], which use r? instead of 7 as an argument. Fig-
ure 8 displays the evolution of periods T, and T, as func-
tions of E,, for various values of €; E,, denotes the initial
longitudinal kinetic energy y,,—1. The lowest value of
£=0.1 gives rise to low velocities and then to classical
motion, whereas the highest value of € leads to relativistic
motion. The period decreases with E,, /2¢, as expected.
When the particle energy approaches infinity, the particle
velocity can be considered as constant and equal to c; the
time to travel along one wavelength is simply 27 /kc,
which can be verified to be the right-hand limit in Fig. 8.

When the particle stays near the basin bottom at x =0,
i.e., kx <<1, the potential energy has a simple quadratic
dependence with respect to x: ®(x)=¢lkx)?/2. Tt fol-
lows that the third-order elliptic integral II in Eq. (41)
reduces to a second-order elliptic integral; as a result,
from the expression for Tp we recover the period associ-
ated with the quadratic potential energy given in Sec. II B
with K /my c*=¢ek?/2:

untrapped particles

kel

T

FIG. 8. Potential energy €[ 1 —cos(kx)]: period as a function
of the ratio of the maximum total particle energy E,, to the
maximum well potential strength 2e. The energy E,, is defined
as E,, =7,,—1+®,,. The potential energy strength ¢ is (a) 0.1,
(b) 0.3, (c) 1, and (d) 4. The separatrix between trapped and un-
trapped particle domains is at E,,, /2e=1.
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1/2
4 |2 — T
Tp=—|= +®,E |-,
P ke |e Vate, 2 zl
1 T
————F 2z (43)
Vate, |2

In the weakly relativistic limit, which allows us to ex-
pand Eq. (43) to first order in ®,,, the oscillation period
becomes

4 1 T T
Tp=—— |F|Z rp | +2cE | T
P ke v [F |2 | TEEE |
—(2e—®,,)F %,r,, , (44)

where r,=1/®, /2¢. The limit ®, —0 leads to the
value 7 /2 for both elliptic integrals, which results in the
classical limit Tp=2m/(kcV'e). For a plasma, we have
K =mcco[2,e/27/ 1» so that the classical period reduces to
the expression 27y /@y, Which is the standard trap-
ping period, except for the electron mass increase due to

the transverse Lorentz factor.

B. Particle trajectory

We limit our analysis to the trapped particle. By using
the parameter 3, defined by

24+, )P,,sin*(Bp)

o= : 45)
2+, sin*(Bp)

in Eq. (38), we obtain the following expressions of the
time, location, and momentum:

1 1 m
ZP(BP):E-\/—_E (2+¢m)n BP,_T,"P
—F(Bp,rp) | , (46)
kot (B )= cos™~! &, (2+®,, )sin’(Bp) an
piPpIT €08 e[2+®, sin?(Bp)] |
ppBp) | [2420, —@,sin%B,) |* | 12 )
my c 2+, sin¥(Bp) .

Equations (46)—(47) are correctly written for the condi-
tion 2+®, >2e. When the opposite condition
2+®,, <2¢ has to be considered, we have to change 2 to
2¢—®,, to obtain the correct expressions. The initial
condition ®=0 is recovered from Egs. (45)-(48): since
Bp=0, then t =0, x =0, and p/my ,c =V (1+®, ) —1.
For ®=®,, Bp=w/2, so that =Tp/4,
kx =cos” Y (1—¢,, /e)=kx,,, and p =0; these conditions
correspond to the position extremum of the particle.
Figures 9 and 10 show the position and momentum of
a trapped particle as functions of time, and Fig. 11
displays the phase diagram (x,p) for a trapped particle.
We have chosen the value e =2.5; the maximum potential
energy ranges from ®,, /2¢=0.2 to 0.975. We can ob-
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kx

FIG. 9. Potential energy e[l1—cos(kx)]: location of a
trapped particle as a function of time (referred to as kc) for
€=2.5, and for the maximum potential ®,, = (a) 1, (b) 2, (c) 3,
(d) 4, and (e) 4.95. At ¢ =0, the particle is at x =0, with the
Lorentz factor y,,=1+®,,.

serve that aspects of both trajectory and momentum
change rapidly when approaching the separatrix at
®,, > 1.95¢, as compared to smaller values of ®,,,.

For the classical limit, i.e., €<<1, Bp and rp become
sin”(v/®/®,,) and V' ®,, /2¢, respectively. In Eq.
(46), the third-order elliptic integral II(Bp, —®,, /2,rp)
reduces to F(Bp,rp), giving the following expressions for
the time and particle position and velocity as functions of
the potential energy:

_ 11 | @ ®,
tp(P) e ———‘/EF{sm —q)m , ——28 R (49)
xp(d>)=%cos_1 1——3:_3 , (50)
vp(P) P
”c =y2(®, ), (51)

in agreement with the standard result reported in Ref.
[10].

p/my 1S

FIG. momentum

10. Potential energy €[1—cos(kx)]:
p/my ,c of a trapped particle as a function of time for €e=2.5
and the maximum potential ®,, = (a) 1, (b) 2, (c) 3, (d) 4, and (e)
4.95. At t =0, the particle is at x =0, with the Lorentz factor
Yxo=1+D,.

p/my ¢

FIG. 11. Potential energy €[1—cos(kx)]: phase portrait (lo-
cation x, momentum p/my,c) of a trapped particle. We use
£=2.5; the values of the maximum potential are ®, = (a) 1, (b)
2, (c) 3, (d) 4, and (e) 4.95.

C. Particle acceleration length

In the previous sections, we have assumed that the po-
tential well was immobile. If this well is associated with a
wave with nonzero phase velocity, the above calculations
have to be carried out in the rest frame of the wave and
the quantities involved in the preceding equations
transformed from the lab frame via a Lorentz transform.
If v, denotes the phase velocity and vy, the phase Lorentz

factor defined by y,=1/ Vi— Uf, /c?, then the electric
field is Ejsin(k;[x; —v4t;)] in the lab frame and
Eysin(kx) with k =k /vy, in the wave frame (the sub-
script L stands for lab frame); as for the electric potential,
we have, respectively, ¢y cos[k;(x; —v,t)] and
¢pcos(kx) with the relation @, =y 4y, . The space-
time quadrivector modifies via the Lorentz relations to
t=y4t; —vyx; /c?)and x =y 4(x; —v4tp ).

There are basically two physical problems associated
with electron acceleration. On the one hand, we can look
for the plasma length /;,(®,,) in the lab frame required
for an electron located at ®,, potential energy with zero
velocity to go down to ®=0 where its kinetic energy
maximizes; such a length is the so-called acceleration
length. On the other hand, we can also look for the max-
imum energy represented by the Lorentz factor v, (I;)
that an electron can reach when the plasma length is im-
posed to be /; in the lab frame. In the following, we shall
concentrate on the first consideration.

We consider the initial condition k;x,,; =kx,,
=—cos” !(1—®,, /¢). Since the wave phase is conserved
by a Lorentz transformation, at any time during the par-
ticle motion we have the equality
kp(Xpp +1p —vgtp)=kx=—cos"'(1—®/e), where I
denotes the distance the particle propagates from x,, in
the lab frame. The Lorentz relations lead to the follow-
ing expression for the distance in the lab frame associated
with the particle motion from the initial potential ®,, to
the potential energy ®:

+ki[ cos"(1—®,, /e)— cos"(1—d/e)] .  (52)
L
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The so-called acceleration length is defined by ®=0, so
that we can write

lLa=u¢‘y¢t(<I>m)+-]-(l—cos_l(l—d)m/e). (53)
L

For a fixed wave, we recover the wave-frame result
k;l,=cos”(1—®,, /e), i.e., a finite plasma length. The
case ®,, =2¢ gives k; I; , =, which corresponds to half a
wavelength. Conversely, if the phase velocity approaches
the light velocity in vacuum, the acceleration length
largely exceeds the wavelength, so that /;, becomes sim-
ply proportional to #(0). We have a useful gauge for the
acceleration length by assuming that the electric field is
constant with value E during the particle acceleration, so
that we can write A®; /2=gE /mc?’k;. The momentum
increases according to p =qEt, which gives y, =qEt /mc
if p/mc >>—1. Since the particle Lorentz factor can be
written y, =1+y AP, ~y,A®P,, we obtain an estimate
of the acceleration length /;, =2ct; z4yﬁ/kL by means
of the time-space transformation.

Figure 12 displays the ratio I, /‘yﬁ given by Eq. (53)
for potential strengths € ranging from 0.1 to 4 in the lab
frame and for y,=10. The increase of the potential ener-
gy by the Lorentz transformation from the lab frame to
the wave frame gives rise to relativistic motion even for
the lowest value e=0.1. The time involved in Eq. (53) is
given by Eq. (39). We observe that the estimate of the ac-
celeration length corresponds to the critical point above
which the length increases dramatically. The maximum
energy 2¢ requires an infinite time to reach and hence an
infinite plasma length; this limit corresponds to ®, =2¢
in Fig. 12 (the curves have been truncated by the plot
process). The value [;, is a correct estimate of the ac-
celeration length since the particle energy gain is very
close to ®,, for this value. Figure 12 compares well with
the result from Ref. [12] which reports numerical integra-
tion of the particle motion for the case y,=10. For
£—0, the particle motion period diverges to infinity, so
that the acceleration length itself becomes infinite. For a

2
a
15}
| b
La
C
kyz
plo 1 d
€
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0.5 ]
0 2 4 6 8

[

m

FIG. 12. Potential energy €[ 1—cos(kx)]: acceleration length
1., /v3\, as a function of the maximum potential energy ®,,;
both quantities are given in the lab frame. The phase Lorentz
factor is ¥4,=10 and the potential strength in the lab frame is
e=(a) 0.1, (b) 0.3, (c) 0.5, (d) 1, (e) 2, and (f) 4. A, is the potential
wavelength 27 /k; in the lab fame.
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FIG. 13. Potential energy €[ 1 —cos(kx)]: acceleration length
I /yﬁkp in the lab frame as a function of the phase Lorentz
factor. The potential strength ¢ is (a) 0.1, (b) 0.3, (c) 0.5, (d) 1,
(e) 2, and (f) 4 in the lab frame. The potential wavelength

A, =2m/k, in the lab frame. For all plots, the particle is initial-
ly located at the same point in the potential well:
@, =2e—0.01.

particle which is initially located close to the basin bot-
tom, the period is 277 /(kcV ) in the wave frame, accord-
ing to Sec. III B. If the cos !( ) term is disregarded in
Eq. (53), which is valid for_y¢>>1, we obtain the ac-

celeration I;,=cym/ (2\/7/¢8). This length is larger
than the estimate /;, for low values of €, more precisely
e<(m/8)/y3.

Figure 13 shows the dependence of the acceleration
length with respect to y 4, for various values of €. The ac-
celeration length decreases with increasing potential
strength €. For y,=1, all the curves converge to the
same value [;,=0.454,; the difference from A,/2 is
caused by the initial particle location slightly below the
potential top. When £— 0, the acceleration length ap-
proaches the preceding estimate /;,. This can be ex-
plained by the fact that the particle has a constant veloci-
ty equal to ¢ and thus does not depend on the real
potential-energy amplitude.

The problem related to the energy gain in a finite im-
posed plasma length can be solved using Eq. (52), which
gives implicitly the potential energy @ felt by the particle
when the particle has transited along the distance /; . The
Lorentz factor of the particle is then y,=1+y,A®,,
which in the wave frame becomes

Ve =V o 1FV AP ) +V 73— 17y AD (v ,AD, +2) .
(54)

IV. CONCLUSION

We summarize our work first. We have analytically
examined the motion of a relativistic particle whose po-
tential energy depends on x via a power-law expression
|x|" or via a pure sinusoidal expression. Various figures
have been included in this paper in order to shed light on
the intricate expressions that underlie the particle
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motion. We have also systematically discussed both the
classical and hyper-relativistic limits, and we have tried
to find some intuitive explanation for the analytical re-
sults. The expression for the period of the oscillatory
motion was given for any value for n. The classical limit
deduced from this general expression fully agrees with
the usual result. The trajectories for the cases n =1 and
2 have been more extensively discussed because they are
more relevant to laser-plasma interaction. For the
sinusoidal potential, the period was calculated for both
trapped and untrapped particles. The trajectories were
also defined parametrically. The analytic expression for
the acceleration length was given as a function of both

the initial energy of the particle and the wave-phase ve-
locity.

The analytical results which have been presented
throughout this paper can be useful in various situations.
They can be considered as a useful gauge when more
complex potential-energy shapes are considered, such as
those given by the wake-field concept. Furthermore,
knowledge of both the period and the trajectory is useful
to consider the radiation emitted by a plasma illuminated
by very intense irradiance; the harmonic generation is
one of the most interesting topics for both fundamental
understanding and plasma applications. Forthcoming pa-
pers will deal with both of these aspects.
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